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Abstract—Advanced DDR memories are widely used
in almost all electronic devices and computing systems.
Therefore, Rowhammer attack, a hardware-based attack
targeting DDR memory, severely threatens data security
and privacy in modern computing systems. Among existing
solutions, the leading and most effective example is the
Target Row Refresh (TRR) mechanism. TRR is proposed
as the standard protection mechanism by JEDEC [1] and
is widely used in DDR4 memory. As a protection scheme,
TRR will refresh the victim row once a Rowhammer attack
is detected. However, recent work such as TRRespass [2]
shows that TRR can be bypassed and Rowhammer attack
is still possible even on the latest DDR4 memory.

While it is still believed that TRR-like protection mech-
anisms are promising solutions against the Rowhammer
attack, it becomes an urgent task to improve the security of
TRR mechanisms. However, TRR implementation details
are proprietary to the DDR4 manufacturers. In order to
better understand TRR protection mechanisms and help
improve the TRR implementation, in this paper, we pro-
pose a novel timing side-channel based reverse engineering
method to understand the underlying mechanisms of TRR.
We then thoroughly analyze different implementations
which are integrated into various DDR4 memory chips
from different manufacturers. With experimental results
collected from a range of DDR4 memory chips, we prove
the effectiveness of the proposed TRR recovery mecha-
nism.

Keywords: Rowhammer attack; DDR4 memory;
Target row refresh; Memory protection

I. INTRODUCTION

Rowhammer attack is one of the most powerful at-
tacks targeting hardware vulnerabilities in modern DDR
DRAMs. Under the Rowhammer attack, different rows
in the same bank cause repeatable bit flips in adjacent
rows. This attack was first identified in [3] in 2014. Many
researchers have subsequently exploited the Rowhammer
attack using various attack vectors for different purposes.
The authors in [4] developed an attack to gain root
privileges. The authors in [5] obtained different users’
root privileges on the cloud with the help of Rowhammer

attack. A Rowhammer attack based distributed denial of
service (DDoS) attack on the Intel SGX framework was
proposed in [6]. Rowhammer has also been successfully
deployed on high-performance computing platforms and
embedded/mobile devices [7], [8]. Considering that DDR
DRAMs are widely used in almost all modern electronic
devices, Rowhammer attacks severely threaten the secu-
rity of all these platforms and devices.

Given the severity of the Rowhammer attack, var-
ious protection solutions have been proposed. These
protection mechanisms can be briefly divided into two
categories, software- and hardware-based protections.
Among software-based protection methods, ANVIL [9]
utilizes hardware performance monitors to detect ab-
normal side-effects of high-frequency memory accesses,
i.e., high cache miss rate when performing Rowhammer
attacks. In CATT [10], memory relocation and isolation
techniques are implemented to avoid the access of the
vulnerable DDR bits. Vulnerable DRAM cells in the
kernel space memory are detected and replaced with
other rows. In PARA [11], probabilistic row refresh is
leveraged in order to refresh the victim row randomly.
Per-row counts are used to determining if the refresh
operation should be generated for victim rows.

Among hardware-based protection methods, the ma-
jority are based on the idea of generating more refresh
operations so that victim rows will either be refreshed
before bits are flipped or be corrected after bits are
flipped due to Rowhammer attacks. For the former, target
row refresh (TRR) and pseudo target row refresh (pTRR)
are dominant examples. For the latter, error correction
code (ECC) is widely used in modern DDR DRAMs,
especially those used in high performance computing
platforms.

Among these protection methods, the JEDEC stan-
dard [1] specifies TRR as the mitigation against the
Rowhammer attack. With the TRR protection, the latest
DDR4 DRAM has proven to be resilient against single-
side and double-sided Rowhammer attacks [2]. However,
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a new variant of Rowhammer attacks, so-called many-
side Rowhammer [2], exploits limitations of the TRR
solution and makes the latest DDR4 DRAM vulnerable.
In the many-sided Rowhammer attack, the authors indi-
cate that the limited size of sampler is the root cause of
the failed TRR protection.

The many-sided Rowhammer attack raises concerns
about the TRR protection. Thus, different implemen-
tations of the TRR should be thoroughly re-evaluated
to check their resilience against Rowhammer attacks.
However, not much work exists regarding the TRR
mechanism and its inner design for different memory
modules. Considering that many TRR implementation
details are undocumented, reverse engineering the TRR
design is quite challenging. Upon this request and to
help better understand TRR as mitigation and its imple-
mentation, in this paper we propose a time-based side
channel to reveal design details of the TRR mechanism.
Previous research [2] has already shown that TRR con-
tains two key parameters, the maximum activation count
(MAC) and the sampler size. However, the authors in [2]
used a custom FPGA-based memory controller to reveal
the details of each. When using commodity systems,
they focused on generating bit flips using many-sided
Rowhammer attacks that were agnostic to the MAC and
sampler size. Different from the provious work, in our
approach, we first aim to reverse engineer these two
parameters on commodity systems through observing
the timing channel caused by TRR. Our experimental
results show that we can recover precise values of
these two parameters on different DDR4 memory chips.
With the successful recovery of these values, we further
show that our method can efficiently discover the inner
implementations of TRR solutions.

In summary, we make following contributions in this
paper.

• We present an approach for reverse engineering the
TRR implementation using a timing side-channel
on commercial systems.

• It is the first work to reveal the MAC and sampler
size without specialized equipment. Compared with
previous work, our method can help recover the
MAC and the sampler size of the underlying TRR
mechanism without harming the DRAM chip via a
Rowhammer attack.

• Supported by the recovered parameters, we demon-
strate how to reveal inner TRR implementation
details.

The rest of the paper is organized as follows: In

Section II, we introduce background information related
to basic DDR memory structure, refresh, the TRR mech-
anism, and Rowhammer attacks. Next, we discuss as-
sumptions about the TRR implementation that forms the
basis of the timing side-channel in Section III. We then
propose our timing side-channel for reverse engineering
details of TRR in Section IV. In Section V, we present
our experiment design and results. We also discuss how
to use our method to reveal inner implementation details
about TRR in Section VI. Finally, we conclude our paper
in Section VII.

II. BACKGROUND

In previous research, the Rowhammer vulnerability
and DRAM structure have been systematically discussed
[12]–[15]. However, not much work introduces the re-
fresh operation inside the DRAM. In this section, we
first provide necessary background knowledge of DRAM
structure and refresh operation. We will then introduce
the Rowhammer attack and the fundamental concept of
TRR.

A. DRAM Architecture and Operation

The hierarchical structure of the modern DRAM mod-
ule is shown in Figure 1, sequentially including rank,
chip, bank, and cell. In one DRAM chip, it consists
of several banks and each bank contains a row decoder
and a sense amplifier array. When the data is requested
from one bank, the row decoder will activate a certain
row and put the data into the row buffer. Before the
data is loaded into the row buffer, sense amplifier will
determine the value inside each cell and normally the
high voltage represents the logical value ‘1’ and low
voltage is the logical value ‘0’. In a DRAM cell, it
contains a capacitor that connects to an access transistor
through the column line. The column lines (also called
bit line) are arranged vertically and shared by multiple
rows. The access transistors are controlled by a row
decoder through row line (also called word line) which
is arranged horizontally and shared by columns.

DRAM refresh: As a requirement in the JEDEC stan-
dard [1], the DRAM module should promise a refresh
operation to refresh all DRAM cells every 64 ms under
normal temperature (32 ms under high temperature).
However, refreshing all cells at same time causes the
DRAM module to have long data transferring suspend-
ing. To avoid such significant suspending, the refresh
operation is separated into 8192 refresh steps. In each
step, the DRAM module refreshes 1/8192 portion of the
total cells after receiving the refresh command sent by
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Figure 1: Dram structure

the memory controller. In order to promise that each
portion of cells is refreshed every 64 ms, an extra
component is required to record the refresh interval
for each portion. To simplify the component, DRAM
then includes a counter and labels each portion of the
cells with a number. After DRAM receiving the refresh
command, the counter will automatically increase by one
and only the portion which has the same number as the
counter is refreshed. Also, DRAM controller will send
8192 refresh commands so that each portion receives
separate refresh commands. The parameters t_REFI
describes the average time interval between two refresh
command. And the parameter t_RFC describes the time
consume for a row to complete one refresh command.
Normally, this value is 50 ns. The total number of
rows in DRAM then determines how many rows will
be refreshed in one refresh step.

There are two scheduling strategies to issue the refresh
operation, burst refresh and distributed refresh. The for-
mer method refreshes the rows one by one until all rows
have been refreshed within the desired time interval. For
the second method, each row is refreshed after a certain
time interval and different row does not require to issue
the refresh in order. Compared with the burst refresh
method, the distributed refresh method separately refresh
the rows so that it decreases the break effect caused by
the burst refresh method.

In some DRAM modules, Column Address Strobe
(CAS) before Row Address Strobe (RAS) refresh (CBR)
technique is used. An internal address counter is inte-
grated in the memory chip which is periodically incre-
mented. Then, the refresh operation is performed after
each RAS is asserted and the internal counter increased.
As an alternative to CBR, Hidden Refresh combines

with a preceding read or write cycle. In this technique,
the refresh operation is parallel completed with the data
transferring. However, CBR and Hidden Refresh still
increase the latency for the DRAM to complete the
refresh operation.

B. Rowhammer Attack

In Rowhammer attacks, we define the row which
accesses with the high frequency as the aggressive (A)
row. And the row which is adjacent to the aggressive row
called victim row (V). During a Rowhammer attack, at
least two rows which stay in the same bank are required
to access alternatively. Based on the number and access
pattern of aggressive rows, various Rowhammer attacks
have been developed including single-side, double-side
and many-side Rowhammer attacks [2]–[4].

Figure 2 shows the detailed implementation of each
Rowhammer attack. In the single-side Rowhammer at-
tack, as the Figure 2(a) demonstrated, it only requires
to have high frequency access of one specific aggressive
row. Another row is picked only for the purpose of re-
freshing the row buffer. While double-side Rowhammer
attack in Figure 2(b) requires to access both adjacent
rows of the victim row so that it can increase the
possibility of flipping bits in victim row. For single-
side and double-side Rowhammer attacks, previous work
have proved that both techniques can be successfully
applied to DDR2 and DDR3 memory [3]. However,
after the TRR technique is introduced as the standard
protection against the Rowhammer attack in JEDEC,
DRAMs equipped with TRR [16] are immune to the
single-side and double-side Rowhammer. While many-
side Rowhammer utilizes the design defect in the TRR
to successfully perform the Rowhammer attack in DDR4
memory. For the many-side Rowhammer attack in Fig-
ure 2(c), it follows the access pattern as the ‘AVAVA’
to exploit the bit flipping for all victim rows. For all
kinds of the Rowhammer attacks, clflush or equal
techniques [9], [15] are implemented to ensure that the
malicious program can access the data in the DRAM
directly.

C. Rowhammer Defense

To protect the DRAM against the Rowhammer at-
tack, various defense methods have been developed
including software- and hardware-based protection. The
software-based protections often focus on the Rowham-
mer pattern detection [9], memory isolation [10], [17],
[18] or software-implemented Error Correction Code
(ECC) [12]. In the Rowhammer pattern detection, high
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Figure 2: Typical Rowhammer attack

frequency of memory access and high rate of cache miss
are two key features. Based on it, ANVIL [9] proposes
the method which utilizes the performance monitor unit
(PMU) to detect the Rowhammer attack by monitoring
the abnormal cache activities. Once the high rate of
cache miss is detected, the memory access pattern is
further analyzed to determine if a Rowhammer attack is
implemented. For memory isolation technique, it aims
to isolate a secure memory row inside the DRAM. In
CATT [10], the kernel space is isolated and remapping to
the rows which are not vulnerable to the Rowhammer at-
tack. A similar idea is used in Throwhammer [18] which
isolates a secure direct memory access (DMA) buffer to
prevent the DMA Rowhammer attack. In ZebRAM [17],
the secure row is remapping between the vulnerable rows
to prevent the bit flipping in the vulnerable rows. In [12],
a software ECC is proposed. If any bit is flipped by the
Rowhammer attack, ECC will correct the bit to prevent
the attack.

Unfortunately, the software-based protecting mecha-
nisms are complex and hard to implement. Thus, easily
deployable hardware-based protections are more popular
and have been applied to DRAM modules already, e.g.,
double the auto-refresh, TRR and pTRR. In TRR, extra
refresh operation is generated to refresh the row which is
target by the Rowhammer attack. In fact, TRR is already
included in the JEDEC as a standard protection mecha-
nism. As the JEDEC requested that the 7th bytes inside
the Serial Presence Detect (SPD) indicates the value of
maximum activation count (MAC) and ‘0’ presented the
untested MAC and ‘ff’ means the unlimited value.

III. TRR IMPLEMENTATION DISCUSSION

As we discussed earlier, TRR was originally proved
to be a very effective solution countering single-side
and double-side Rowhammer attacks. However, after
the development of many-side Rowhammer attacks, the
usefulness of TRR is in doubt. Nevertheless, we strongly
believe that TRR is still a potential candidate if the TRR
implementations can be further optimized by taking the

latest attacks into consideration. In order to achieve the
goal for TRR optimization, our first task is to understand
the current TRR implementation details, which are often
proprietary information and are not available in public. In
this section, we will analyze the technical details of TRR
mechanism, paving the way for TRR reverse engineering
in the next section.

A. Introduction to TRR

In [2], TRR is described using two key features,
namely the maximum activation count (MAC) and the
sampler. The MAC determines the maximum number of
times a row can be activated within one refresh interval.
Once the access exceeds this boundary, extra REFRESH
commands are generated by the memory controller for
the adjacent rows.

The sampler inside the DRAM is used to track the
location of aggressive rows. If a row is accessed, then the
row number and the access time of that row are recorded
in the sampler. The authors in [2] speculate that it is
implemented as one extra buffer with a limited size.

While TRR has been part of the JEDEC standard
since 2014, its implementation details are specific to
the DRAM manufacturer. High-level details are only
provided to meet specifications. Previous research [2]
has indicated that TRR implementations vary wildly
even among different DRAM modules from the same
manufacture. We therefore aim to uncover those im-
plementation details. In particular, we are interested in
recovering the MAC and sampler size. These two features
form the basis of the TRR solution. Our analysis in
Section IV relies on two assumptions which we discuss
below.

B. TRR Latency

As introduced in Section II, DRAM refresh introduces
a short latency during read/write cycles. TRR relies on
generating additional REFRESH commands in response
to row activations exceeding the MAC. TRR assigns extra
refresh operations to protect the victim rows suscepti-
ble to potential Rowhammer attacks. These additional
refresh operations therefore lead to increased latency
during DRAM data movement that is observable to the
end-user. Based on this understanding, we then propose
the following assumptions for all TRR implementations.

Assumption 1: The TRR solution introduces an observ-
able latency in data movement.
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C. Triggering TRR

Previous research [2] has shown that TRR can suc-
cessfully protect DDR4 DRAM modules from the single-
sided Rowhammer attack. However, repeatedly accessing
a single row does not trigger TRR. This is because once
the row is activated, subsequent requests to the same
row will be serviced by the row buffer and not the
DRAM row. Therefore, we can infer that continuous
accessing two random rows inside the same bank can
efficiently trigger TRR. We therefore make the following
assumption.

Assumption 2: Randomly accessing two different rows
inside one bank repeatedly can efficiently trigger TRR.

This simplified assumption allows us to circumvent
the traditional Rowhammer attack approach that requires
knowledge of physical address mappings in DRAM. Be-
sides, a well-developed tool [19] exists for easily finding
the rows that stay in the same bank. This further prevents
us from relying on successfully applying Rowhammer
in our analysis, while at the same time allowing for
significant speed-up of our testing process.

IV. TIMING SIDE-CHANNEL FOR REVERSE

ENGINEERING TRR

We then develop a timing-based side-channel ap-
proach for reverse engineering the details of the TRR
implementation in DRAM modules. Our goal is to verify
our assumptions and also try to recover the implemen-
tation details of TRR mechanisms. Before providing
details of our approach to find the MAC and sampler size,
we will first discuss the challenges.

A. Challenges

Given the discussion in Section III, we can assume that
the latency caused by TRR can be used to detect TRR
behavior. However, there are several challenges that need
to be overcome.

As described above, TRR will induce extra refreshes
on rows adjacent to the one that is repeatedly activated
in excess of the MAC within a short period of time
(i.e., 64 ms). Refreshing the adjacent rows leads to a
nanosecond latency during data movement. However,
this may be difficult to detect because only a few extra
refresh operations are generated by TRR. Therefore, the
first challenge is forcing TRR to induce a sufficient
number of extra REFRESH commands such that data
movement is observably slow.

Once extra TRR REFRESH commands are observable,
the second challenge is using such information to reverse

engineer the TRR implementation. In our approach, we
mainly focus on reverse engineering two main aspects
of the TRR implementation: 1) the MAC, which triggers
TRR; and 2) the sampler size, which stores the target row
information for sending extra REFRESH commands.

B. Finding Maximum Activation Count

The MAC defines the maximum number of times a row
can be accessed before being refreshed. TRR is triggered
when a row is accessed more times than the defined value
in MAC. Once triggered, a few REFRESH commands are
sent to refresh adjacent rows. In general, in order to
recover the MAC, we only need to increase number of row
accesses until we observe a slowdown. However, since
only a few REFRESH commands are issued in response
to triggering TRR, it is difficult to detect. As such, we
need to maximally trigger TRR in order to better monitor
the slowdown. Our approach achieves this by accessing
multiple rows inside one bank, thereby guaranteeing that
multiple rows are read with the same activation time.

In algorithm 1, we show the detailed implementation
of our approach. We first generate a large memory space
that covers all rows from one random bank. Then, we
randomly combine two rows from the same bank to form
a pair. We repeatedly access the row pair MAC times
before moving on to another row pair. This process is
repeated while the total number of memory accesses is
less than the maximum allowable number of accesses
within a refresh cycle. The time taken to repeatedly
access row pairs within a maximum allowable refresh
cycle indicates if TRR is triggered as a measurable
slowdown. If we do not observe a slowdown, then we
increase the guessed MAC value and repeat the process
from the beginning.

C. Finding Sampler Size

The sampler keeps track of aggressor rows in order to
send REFRESH commands to adjacent rows. The exact
details of the sampler implementation are undocumented,
but it is bound by the number of aggressor rows it
can record. It is possible to exhaust the sampler by
aggressively accessing more rows than it is capable
of monitoring. Once the sampler has been exhausted
it will fail to send extra REFRESH commands, and
since extra REFRESH commands sent by TRR induce an
observable slowdown (see Section IV-B) we may observe
a corresponding speedup. Exhausting the sampler will
reduce the time taken to access DRAM because TRR is
no longer sending REFRESH commands in the access
interval. In our method, we deliberately overwhelm the

2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2021) 243

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on August 24,2022 at 19:46:48 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Recover the maximum activation
count (MAC)

Result: Maximum activation count
while MAC < MAX do

while accesses < MAX do
while i < MAC do

access first & second row
flush first & second row

end
move to next pair

end
if latency increased then

return MAC
end
increase MAC

end

sampler by by accessing an increasing number of rows
in excess of the MAC.

Algorithm 2: Recovering the sampler size

Result: Sampler size
while i <= MAC do

while nrows < sampler size do
access nrows in bank
flush nrows in bank

end
end
if latency decreases then

return nrows
end

In algorithm 2, we demonstrate our method to find the
sampler size. We first generate a large memory space
that covers all rows from one random bank. We then
repeatedly access an increasing number of rows within
that bank until we trigger TRR. We then measure the
latency of those accesses and exit once we observe a
speedup, returning the discovered sampler size indicated
by nrows.

V. EXPERIMENT

A. Experimental platform

Our experimental platform is a commodity laptop
containing an Intel i7-6700 CPU in which we test a
number of DRAM modules from several manufactures.
The detailed information of the tested DRAM modules
is listed in the Table I.

Table I: Tested DRAM modules

Manufacture Type Size(GB) Frequency(MHz)

TimeTec DDR4 8 2133
Corsair DDR4 8 2133

Hynix 1 DDR4 8 2666
Hynix 2 DDR4 4 2133

Samsung 1 DDR4 8 2133
Samsung 2 DDR4 4 2133

Micron DDR4 8 2666
HyperX DDR4 8 2133

B. Is TRR Present?

TRR is documented in JEDEC as a protection against
the Rowhammer attack. Thus, performing Rowhammer
attack on DDR4 is one way to trigger TRR. However, it
is unknown that whether TRR is the only mitigation im-
plemented against the Rowhammer attack. Other, often
undocumented, solutions may influence the behavior of
TRR. This would skew our experimental observations.

The previous work [2] reveals that extra REFRESH
commands required by TRR are generated by the mem-
ory controller. It has been shown that inducing bit flips
was possible once the memory controller was prevented
from sending the REFRESH command even when TRR
was enabled. Given this we can assume that if a suc-
cessful Rowhammer attack is detected while refresh
is disabled, then TRR is the only Rowhammer attack
mitigation in place 1. Otherwise, the DRAM may have
other protection mechanisms against the Rowhammer
attack.

To validate the presence of TRR, a platform that can
deliberately disable sending the refresh command to the
DRAM chip is required. We therefore adapt a Xilinx
ZYNQ UltraScale+ ZCU104 FPGA board to perform
this experiment. We can verify TRRs presence once
we observe bit flips in the DRAM while performing a
Rowhammer attack with refresh disabled. As a baseline,
we first test a double-sided Rowhammer attack with
the refresh command enabled. We generate a 128MB
memory space for the testing and access the aggressor
row 100,000 times. We do not observe any bit flips
while performing the double-sided Rowhammer attack
with refresh enabled on all of the DRAMs evaluated (see
Table II). However, when we disable refresh using the

1Note that we do not consider that a bit flip caused by leakage
alone to be a Rowhammer attack.
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Table II: Flipping bits number corresponding to refresh oper-
ation

DRAMs With refresh Without refresh

TimeTec None 335
Corsair None 211
Hynix 1 None 12
Samsung 1 None 56
Micron None 11
Samsung 2 None 112

same parameters as before we observe a sharp increase
in the number of observed bit flips.

Based on these results, we can conclude that TRR is
present on the DRAMs under evaluation and that it is
the only protection mechanism in place. Further, we can
infer that TRR depends on the REFRESH command to
mitigate Rowhammer attacks.

C. Verifying the Assumptions

To verify Assumption 1 2, we compare the latency
of DRAM memory accesses when TRR is in inactive
and active modes (i.e., assigning extra refresh opera-
tions). First, we measure the average time for accessing
two rows inside one bank with a small number of
accesses (e.g., 1,000 times). Next, we keep accessing
the same two rows for a relatively large number of times
(e.g., 1,000,000 times) to deliberately trigger TRR. The
average time is also recorded. In the case that TRR
is triggered even under a small number of memory
accesses, we duplicate the first experiment while varying
the number of accesses. We show the average latency
per number of accesses (marked by different colors)
from 4 DRAM modules in Figure 3. Both experiments
are repeated 10 times and the figure shows the average
results of those experiments. From the figure, we can
observe that the average latency increases roughly 20
to 30 cycles when TRR is active compared to normal
memory accesses.

D. TRR Reverse Engineering Results

In this section, we present results on recovering the
MAC and sampler size. First, we show the MAC values
recovered and the corresponding slowdown in memory
accesses once the MAC is found in Table III. The
latency for normal memory accesses is shown in the
second column. We observe an average increase of 25

2Note that we may not verify Assumption 2 directly but our
experiments are designed to implicitly verify Assumption 2.

Figure 3: Average cycle for memory access under different
access time

Table III: Memory access latency on different implementation
and the final MAC

DRAMs Normal TRR MAC

TimeTec 372 410 20,000
Corsair 376 400 50,000

Hynix 1 365 394 60,000
Hynix 2 408 433 2,000

Samsung 1 375 393 20,000
Samsung 2 386 399 10,000

Micron 374 384 5,000
HyperX 378 401 10,000

cycles when TRR is active. This verifies that we can
successfully recover the MAC based on the slowdown
due to extra REFRESH commands issued by TRR. The
recovered MAC values vary per DRAM manufacturer and
within the same manufacturer indicating that a row’s
susceptibility to Rowhammer is process dependent.

Next, we show the results of recovering the sampler
size of the different DRAMs. The second column in
Table IV lists the sampler sizes we found. As the
table demonstrates, most sampler size are successfully
recovered with high accuracy. However, we also notice
that for certain manufacturers we recover inaccurate
sampler size. For example, the sampler size for the
Micron DRAM module we tested is larger than 100
rows, which is unusual. It is because that we do not
generate sufficient rows in the same bank to overwhelm
the sampler. Also, a large sample size prevents us from
overwhelming it.

VI. MORE TRR INSIGHTS

In Section V, we successfully recover the MAC and
sampler size. However, other implementation details still
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Table IV: Replacement strategy for different DRAMs

DRAMs Sampler Size Replacement Strategy

TimeTec 3 FIFO
Corsair 4 FIFO

Hynix 1 22 FIFO
Hynix 2 8 FIFO
Micron >100 -

Samsung 1 20 FIFO
Samsung 2 12 FIFO

HyperX 6 FIFO

need further investigation, e.g., the replacement strategy
of the sampler. Thus, we design additional experiments
to discover more implementation details of the TRR.

A. Replacement Strategy of Sampler

In recovering the sampler size, we made an assump-
tion that the default replacement strategy of the sampler
uses first in first out (FIFO). So we only access the
memory in sequential order. Even though this assumption
aids in recovering the sampler size, it does not consider
other replacement strategies. In general, knowledge of
the exact replacement strategy allows one to optimally
apply the Rowhammer attack when TRR is present. We
therefore re-evaluate the replacement method by altering
the memory access sequence in Algorithm 2. If we
notice that the latency decreases for a typical memory
access sequence, we can infer the replacement strategy.
In our experiments, we test several possible strategies:
1) first in last out (FILO); 2) last in first out (LIFO);
and 3) least recently used (LRU). The third column in
Table IV shows the replacement strategies we found for
each DRAM module. Interestingly, FIFO was the only
strategy which caused a measurable decrease in latency.

B. MAC information in SPD

As we introduced in the background section, JEDEC
uses the 7th byte in SPD to store the value of the MAC.
However, previous research [2] shows that most DRAM
does not store the MAC inside the SPD. Through our
experiments, we also notice that TRR works even when
the SPD does not have a value. Thus, we assume that
the SPD value does not affect the inner implementation
of TRR.

To verify this assumption, we modify the MAC SPD
value of one DRAM. In our experiment, the SPD value is
deliberately modified to a large value. In this case, TRR
should fail to work if the access time is lower than the

Table V: SPD information and the results after SPD data
changed

DRAMs Original Changed Effect?

TimeTec unlimited 100,000 No
Corsair untested 100,000 No

Hynix 1 unlimited 100,000 No
Hynix 2 unlimited 100,000 No

Samsung 1 unlimited 100,000 No
Samsung 2 unlimited 100,000 No

Micron unlimited 100,000 No
HyperX untested 100,000 No

modified value. We again use Algorithm 1 to recover the
MAC value that triggers TRR. If we record a slowdown
at the MAC than the MAC previously collected (see Ta-
ble III), we can infer that the maximum activation count
inside the SPD does not affect the inner implementation
of TRR. In table V, we show the original information
in SPD in the second column, and the modified values
are listed in the third column. From our measurement,
we do not notice any differences after we modify the
MAC, an indication that our assumption on SPD value is
correct.

C. Sampler Reset

During the experiment of measuring the MAC, we
also found that the sampler may clear itself in every
refresh interval. Thus, we run another experiment to
verify this observation. In our experiment, we first select
a number of rows smaller than the sampler size and
repeatedly access them such that the number of accesses
is below the MAC. Meanwhile, the time for accessing
the rows is recorded. We then access the same rows
again. Between the first and second set of row accesses
we wait for one refresh cycle (64 ms). If we measure
an increased latency for accessing the same rows in the
second step, then we can conclude that the sampler keeps
the data between trigger events. Otherwise, the sampler
refresh the storage after being triggered. We observe such
behavior in Samsung 1 DDR4 memory. It is reasonable
for the sampler to clear the storage every 64 ms. That
is, after every refresh cycle, the memory is restored
and there is no longer required for the sampler to track
aggressive rows.

VII. CONCLUSION

TRR is the standard protection mechanism for suc-
cessfully preventing the single-side and double-side
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Rowhammer attacks on DDR4. However, recent research
introduces a Rowhammer attack method to bypass the
protection of TRR. Under the case, it is urgent to
understand the basic implementation of TRR in order
to improve TRR and defend against the Many-sided
Rowhammer attack. Motivated by this, we develop a
novel timing side channel method to reverse engineering
the inner design of TRR. In our method, we focus
on two main attributes of TRR, the MAC and sampler
size. Our experimental results demonstrate that we can
successfully recover these values efficiently. Compared
with previous work, our method does not require un-
derstanding physical address mapping or intentionally
damage the DRAM. Further, inner TRR design details
are recovered by our method. With a more clear under-
standing of the TRR, we hope to develop a more robust
TRR implementation to protect modern DRAMs against
new Rowhammer attack variants.
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